首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52820篇
  免费   4189篇
  国内免费   1995篇
电工技术   2748篇
技术理论   5篇
综合类   2985篇
化学工业   8962篇
金属工艺   3179篇
机械仪表   3233篇
建筑科学   3758篇
矿业工程   1729篇
能源动力   1682篇
轻工业   3751篇
水利工程   858篇
石油天然气   3758篇
武器工业   396篇
无线电   5742篇
一般工业技术   6344篇
冶金工业   2937篇
原子能技术   651篇
自动化技术   6286篇
  2024年   108篇
  2023年   851篇
  2022年   1294篇
  2021年   2164篇
  2020年   1652篇
  2019年   1421篇
  2018年   1627篇
  2017年   1761篇
  2016年   1578篇
  2015年   2081篇
  2014年   2685篇
  2013年   3108篇
  2012年   3321篇
  2011年   3622篇
  2010年   3204篇
  2009年   2875篇
  2008年   2819篇
  2007年   2738篇
  2006年   2895篇
  2005年   2475篇
  2004年   1551篇
  2003年   1352篇
  2002年   1265篇
  2001年   997篇
  2000年   1179篇
  1999年   1462篇
  1998年   1165篇
  1997年   993篇
  1996年   993篇
  1995年   874篇
  1994年   700篇
  1993年   456篇
  1992年   370篇
  1991年   290篇
  1990年   235篇
  1989年   196篇
  1988年   173篇
  1987年   105篇
  1986年   88篇
  1985年   59篇
  1984年   52篇
  1983年   36篇
  1982年   32篇
  1981年   29篇
  1980年   17篇
  1979年   7篇
  1978年   7篇
  1977年   10篇
  1976年   14篇
  1975年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
994.
995.
Amorphous Al_2 O_3-reinforced Al composite(am-Al_2 O_3/Al) compacted from ultrafine Al powders for high-temperature usages confronts with drawbacks because crystallization of am-Al_2 O_3 at high temperatures will result in serious strength loss.Aiming at this unsolved problem,in this study,high-temperature Al materials with enhanced thermal stability were developed through introducing more thermally stable nano-sized particles via high-temperature pre-treatment of ultrafine A1 powders.It was found that the pre-treatment at ≤550℃ could introduce a few Al_2 O_3 in the Al matrix and increase the strength of the composites,but the strength was still below that of am-Al_2 O_3/Al because without being pinned firmly,grain boundaries(GBs) were softened at high temperature and intergranular fracture happened.When the pre-treatment was carried out at 600℃,nitridation and oxidation processes happened simultaneously,producing large numbers of intergranular(AlN+γ-Al_2 O_3) particles.GB sliding and intergranular fracture were suppressed;therefore,higher strength than that of am-Al_2 O_3/Al was realized.Furthermore,the(AIN+γ-Al_2 O_3)/Al exhibited more superior thermal stability compared to amAl_2 O_3/Al for annealing treatment at 580℃ for 8 h.Therefore,an effective way to fabricate high-temperature Al composite with enhanced thermal stability was developed in this study.  相似文献   
996.
The vapor split ratio (RV) adjustment plays an important role on energy efficiency during dividing wall column (DWC) operation. In order to achieve active control of RV, this aticle presents an innovative vapor splitter driven by hydraulics. The vapor flows into main tower from prefractionation section through the rectangle hole located at the end of the partition. Vapor splitting is implemented by the change of flow resistance at the rectangular hole caused by adjusting the liquid level on the bottom plate. This design makes full use of the hydraulic properties in DWC, employing simpler construction with single tunable parameter. Numerical simulations and laboratory tests were both carried out to validate its performance in the DWC with a diameter of 600 mm. The results demonstrate that the desired RV can be handled effectively in the approximate range from 0.5 to 2, basically satisfying the industrial demand for the gas distribution.  相似文献   
997.
Weakly acceptor-doped ceria ceramics were characterized structurally and compositionally with advanced transmission electron microscopy (TEM) techniques and electrically with electrochemical impedance spectroscopy (EIS). The grain boundaries studied with TEM were found to be free of second phases. The impedance spectra, acquired in the range 703 ≤ T/K ≤ 893 in air, showed several arcs that were analyzed in terms of bulk, grain-boundary, and electrode responses. We ascribed the grain-boundary resistance to the presence of space-charge layers. Continuum-level simulations were used to calculate charge-carrier distributions (of acceptor cations, oxygen vacancies, and electrons) in these space-charge layers. The acceptor cations were assumed to be mobile at high (sintering) temperatures but immobile at the temperatures of the EIS measurements. Space-charge formation was assumed to be driven by the segregation of oxygen vacancies to the grain-boundary core. Comparisons of data from the simulations and from the EIS measurements yielded space-charge potentials and the segregation energy of vacancies to the grain-boundary core. The space-charge potentials from the simulations are compared with values obtained by applying the standard, analytical (Mott–Schottky and Gouy–Chapman) expressions. The importance of modelling space-charge layers from the thermodynamic level is demonstrated.  相似文献   
998.
Large and nondeforming Nd: YAG ceramic prepared by wet forming is of great importance as gain medium to obtain high-power solid-state lasers. However, it is difficult to achieve high-quality laser ceramics due to insufficiency of the in-depth understanding of transformation mechanism of gels viscoelasticity and effective control means during drying process. In this work, the rheological behaviors, viscoelastic characteristics, and mechanical strengths in classical acrylamide (AM) and novel Isobam (PIBM) gelcastings were systematically compared to explore the suitable route for the large-sized 2% Nd: YAG transparent ceramics with high aspect ratio (>10). AM system exhibited a higher complex viscosity (1.82 × 105 Pa s), a shorter gel time (92.9 seconds), and a higher flexural strength (about 24.46 MPa) than PIBM system, and especially its ability to quickly gel was beneficial to the homogeneity of green body. In addition, the order of drying rates of wet gels in four drying media was observed as follows: 55℃ hot air> ethanol> solid desiccant> PEG-11000 and the moisture diffusion coefficients were calculated and simulated to offer the deep consideration of drying kinetics. The “ethanol + 55℃ hot air” was regarded as an effective composite drying method to eliminate defect and to achieve φ8 mm × 160 mm Nd: YAG ceramic with the in-line transmittance of 83% @1064 nm. Therefore, not only the cognition of gel process, but also the defects control strategy is proposed. More importantly, this work greatly promotes the application of wet forming and laser ceramics in high-power lasers.  相似文献   
999.
High-power ultrasonic treatment was conducted during the mixing process to obtain poly(vinyl alcohol) (PVA)/carboxyl graphene (CG) mixed matrix membranes (MMMs). Results from X-ray photoelectron spectrometer and thermogravimetric analysis confirmed the enhanced esterification reaction. The increased amorphous region and free volume were investigated by wide-angle X-ray diffraction and positron annihilation lifetime spectroscopy. Scanning electron microscope and atomic force microscope measurements suggested that ultrasonic could uniformly disperse CG in PVA polymer matrix. The mechanical properties and hydrophilicity of as-prepared membrane were enhanced due to ultrasonic treatment. The permeation flux and separation factor of PVA/CG-US membrane for 90 wt % ethanol aqueous solution were 0.79 kg m−2 h−1 and 860, respectively. For methanol (15 wt %)/methyl tert-butyl ether mixture, its permeation flux and separation factor were also increased significantly compared with membranes without ultrasonic treatment. Due to the simplicity of the ultrasonic process and the versatility of the inorganic fillers, this method may contribute to the design of various MMMs and extend the application of these membranes in different uses. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48526.  相似文献   
1000.
Toughed polypropylene (PP) foams, with the combination of blending with trans-1,4-polyisoprene (TPI) and micro/nanocellular structure in the matrix, were prepared using a batch foaming process and N2 as the blowing agent. The incorporation of TPI in the PP matrix induces the enhanced formability and the slightly improved ductility and toughness compared to the neat PP. The simultaneous existence of the TPI phase and micro/nanocellular structure makes the fracture behavior follow the shear yielding of a bundle of fibrils in the tensile load direction. The results of mechanical properties measurements show that the notched Izod impact strengths of foamed PP/TPI blend are two to three times larger than those of the unfoamed counterparts. The PP/TPI blend foam with 5phr TPI content shows the highest impact strength when the foaming temperature is 140°C, which is fivefold increase over that of the neat PP. The enhanced ductility and toughness of PP/TPI foams were found with the increasing foaming temperature. The insert of micro−/nanocellular in PP/TPI blends simultaneously makes the notched impact strength increase significantly, tensile strength decrease, and elongation at break increase obviously, which provides the possibility to combine the higher impact strength and toughness with the advantage of microcellular foaming. POLYM. ENG. SCI., 60:211–217, 2020. © 2019 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号